ERRATA

HEAT TRANSFER A SYSTEMATIC LEARNING APPROACH

NASEEM UDDIN

Pg 69

3.11 CONDUCTION WITH INTERNAL ENERGY CONVERSION INTO INTERNAL ENERGY

CONDUCTION WITH INTERNAL ENERGY CONVERSION INTO

Thermal ENERGY

Pg 200:

For the sake of simplicity, we resort to constant turbulent Prandtl number in this text. We can write $\varepsilon_H = \varepsilon_M P r_t$ and the turbulent heat transfer shall be

Correction: $\varepsilon_H = \varepsilon_M/Pr_t$

Pg 274:

Example 9.3

Air is flowing over at flat plate at freestream temperature of 15°C and velocity U_{∞} =30 m/s. The unheated starting length is 10 cm and the length of the plate is 10 m. The properties of air are k=0.025 W/m·K, v=1.5×10⁻⁵ m²/s, Pr=0.7. Find the local heat transfer coefficient at the end of the laminar boundary layer region.

Correction: The length of plate is 15m.